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We analyze the apparent increase in entropy in the course of the spin-echo effect 
using algorithmic information theory. We show that although the state of the 
spins quickly becomes algorithmically complex, then simple again during the 
echo, the overall complexity of spins together with the magnetic field grows 
slowly, as the logarithm of the elapsed time. This slow increase in complexity is 
reflected in an increased difficulty in taking advantage of the echo pulse. Our 
discussion illustrates the fundamental role of algorithmic information content 
in the formulation of statistical physics, including the second law of thermo- 
dynamics, from the viewpoint of the observer. 

KEY WORDS: Spin-echo effect; algorithmic complexity; second law of 
thermodynamics. 

1. INTRODUCTION 

1.1. The Spin-Echo Effect 

According to the second law of thermodynamics,  disorder, once created, is 
almost  impossible to destroy, The spin-echo effect tj'2J appears to contradict  
this dictum. In this effect, a large number  of  spins, initially aligned, precess 
in an inhomogeneous  magnetic field until they are pointing every which 
way: the spins start out  ordered and become disordered. If the spins are 
then subjected to a radiofrequency pulse of appropriately chosen frequency 
and durat ion,  their subsequent evolution "undoes" the disorder, causing 
the spins to come back into alignment. In this paper we employ both con- 
ventional thermodynamics  and algorithmic information theory to address 
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the question of just how much disorder is created in the spin-echo effect, 
and how effectively that disorder is banished. Use of the physical entropy 
given by the sum of the usual statistical Boltzmann-Gibbs-Shannon 
entropy and the algorithmic randomness (given by the size of the shortest 
description of the known aspects of the physical state of the system) has 
been recently proposed by one of us as essential to the consistent formula- 
tion of thermodynamics from the viewpoint of the observer. ~3~ This paper 
applies such ideas to a simple, experimentally accessible physical system. 

The spin-echo effect was first demonstrated experimentally by Hahn. ~j~ 
We first describe the effect classically here, in its most easily visualizable 
form. We then give a complete quantum electrodynamic treatment to show 
that interactions between the spins and a quantized electromagnetic field 
leave the original "paradox"--the apparent contradiction with the second 
law basically unaffected. 

A macroscopic sample of matter such as glycerin is subjected to a 
strong, stable magnetic field B, pointing along the z axis. If uB>>k,7', 
where p is the magnetic moment of the nuclei in the sample, then at equi- 
librium all of the spins except for a fraction ,-~e ,S/k,f will be pointing up 
along the z axis. The spins are now subjected to a pulse from a radio- 
frequency field B~ directed along the x axis and oscillating at the spins' 
average Larmor frequency ~o = 2#B/h. The pulse has length rt/2e~, where 
~ =pBj/h, which is just the amount of time required for the Larmor 
precession around the field of the pulse to rotate all the spins to a common 
orientation perpendicular both to the z axis and to the direction of the 
rfpulse in a corotating frame of reference. The spins now precess freely 
about the z axis. 

Initially, all the spins are aligned, but local inhomogeneities in the 
magnetic field cause the spins to precess at slightly different rates. If the 
inhomogeneities are a fraction ~ of the total field B, then after l/~ revolu- 
tions the spins will be pointing in all different directions. Inhomogeneities 
of 0.1% will cause the spins to become completely unaligned after 1000 
revolutions, for example. As long as the coupling between different spins 
and between spins and the lattice is weak, this disorder is almost entirety 
due to the differing rates of Larmor precession of the spins. 

Now, at any instant t between the start of the spins' precession at time 
zero and the spin-spin or spin-lattice relaxation time, a second rf pulse can 
be applied. This pulse is exactly twice the length of the first pulse, and 
causes the spins to precess by an angle rr about the rotating magnetic field 
of the pulse. (In fact, as shown quantum mechanically in the next section, 
any length pulse will result in some spin echo: in the treatment here, we 
give the pulse lengths that give the most easily visualizable classical picture 
and the maximum spin echo.) In the frame that corotates with the pulse, 
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the effect of this precession is to take the ith spin from an angle r to an 
angle -q~i. That is, the second pulse conjugates the total phase that each 
spin has accumulated in the course of its Larmor precession. 

The spins continue precessing, each in its own slightly different 
magnetic field. But now the precession of each spin undoes the phase that 
it accumulated before its phase was conjugated. At time t after the second 
pulse, the spins are all lined up again along a direction 180 ~ away from 
their original orientation in the corotating frame. When the spins realign, 
they induce a signal in the rf coil--the echo of the signal that originally 
aligned the spins. 

If the pulse that conjugates the phase of the spins arrives after the 
spin-spin or spin-lattice relaxation time, then the spins will fail to realign: 
in order to give an echo, the evolution of the spins following their conjuga- 
tion must "undo" their entire previous evolution, including all significant 
interactions. No straightforward way is known to reverse the interaction 
between the spins and the lattice in which they sit, but a carefully selected 
sequence of rfpulses suffices to reverse not only the spins' evolution, but 
their interaction with the other spins as well. ~2) 

1.2. Entropy and Information 

We begin with complete knowledge of the state of the spins. As the 
spins precess, we lose all knowledge about their individual orientations: the 
inhomogeneities in the field quickly cause the spins to reach a state of what 
appears to be maximum entropy. But when the second rfpulse is applied, 
the spins just as quickly return to a state of essentially zero entropy. Is the 
second law of thermodynamics being violated? 

The answer is, of course, No. We now show how and why the second 
law is preserved. One possibility is that the entropy accumulated by the 
spins in the course of the evolution is somehow "dumped" into the quan- 
tum state of the electromagnetic pulse that effects the reversal. If such a 
transfer of entropy took place, one could maintain that the second law 
applies to the whole system (i.e., spins and field), but does not have to 
apply to the subsystems. In the full quantum electrodynamic treatment in 
the next section, we show that this is not the case: the entropy of the spins 
is not transferred to the field. The pulse acts essentially as a "mirror," 
reflecting the phases of the spins without recording them, rather than as a 
"photograph" in which an image of the phases is recorded. 

A second possibility is that the entropy of the spins is not increasing: 
the spins are not actually disordered in an absolute sense, but only appear 
to be so. To judge this possibility, we need an intrinsic measure of disorder. 
The algorithmic complexity of the spins--the length of the shortest algo- 
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rithm that can reproduce the spins' configuration--is just such a measure. 
In Section 4, we analyze the algorithmic complexity of the spins and show 
that the spins are in fact completely disordered at the time of reversal. The 
spins' algorithmic complexity does increase significantly. This conclusion 
could have been anticipated simply by pointing out that the collection of 
spins rotating at incommensurable frequencies is an ergodic dynamical 
system. Hence, in the course of its Poincar6 cycle it must spend most of its 
time traversing "typical" (and, therefore, presumably '~ con- 
figurations which overwhelmingly contribute to its equilibrium entropy. 
Indeed, we shall show using conventional statistical mechanics that the 
spins' entropy increases significantly. 

The third possibility, and correct answer, is that although the entropy 
of the spins does in fact first increase, then decrease in the course of the 
spin echo, the entropy of the total system--spins plus lattice plus magnetic 
field-remains almost constant for times significantly less than the 
spin-spin and spin-lattice relaxation times. The algorithmic complexity of 
the entire system evolves only slowly, increasing on average by the 
logarithm of total time elapsed. We are accustomed to think of entropy 
as an extensive quantity, so that the entropy of spins and lattice and 
electromagnetic field is equal to the entropy of the spins plus the entropy 
of the lattice plus the entropy of the electromagnetic field. For a system 
with strong correlations between its parts, however, entropy does not add 
up in this fashion. 

The spins and magnetic field make up just such a highly correlated 
system: to know the orientation of a particular spin, one need only know 
the value of the magnetic field at the spin's site, together with the amount 
of time that the spin has been precessing since the first rf pulse oriented it 
along the y axis in the corotating frame. When such correlations exist, the 
entropy of the whole is significantly less than the sum of the entropies of 
the parts, and it is possible in principle to reduce the entropy of one com- 
ponent without increasing entropy elsewhere. The spin-echo apparatus uses 
the mutual information between magnetic field and spins to reduce the 
entropy of the spins without decreasing the entropy of field and spins 
combined. 

The reader may protest that as a gas expands, collisions introduce 
correlations between the velocities of different molecules, and yet the 
entropy of these molecules is extensive (barring quantum symmetry 
and excluded-volume effects). Indeed, if one could follow Boltzmann's 
(probably apocryphal) instructions to Loschmidt concerning the velocities 
of the molecules and "reverse them," then the correlations between the 
molecules would allow them to return to a prior state of low entropy. The 
difference between the spins of the spin echo and the molecules of the gas 
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is that for the spins there is a simply specifiable procedure to "reverse 
them," even in the presence of significant spin-spin interactions, whereas 
for the molecules in the gas, no such simply specifiable procedure exists. 
One could in principle put a mirror simultaneously in front of each 
molecule, thus reversing their velocities; but to specify the position and 
orientation of all the mirrors requires a vast amount of detailed informa- 
tion, which can in turn be translated into a thermodynamic cost o f  reversal. 

This cost can be calculated by computing the accuracy to which the 
"mirrors" that reflect the particles have to be positioned in order to achieve 
a successful reversal~4): after N collisions, to return the molecules of the 
hard-sphere gas to a volume in phase space V requires that the mirrors be 
positioned to within a volume I//2 N in their own position-angle phase 
space. Given a cost of information storage of kB Tln 2 per bit (as developed 
in detail in ref. 4, and as explained in Section 3 of the present paper), one 
is led to associate a thermodynamic cost of Nk B Tin 2 with the actual 
implementation of the reversal. TM This relatively large cost of reversal arises 
from the fact that the evolution of the hard-sphere gas amplifies errors 
exponentially in time. In contrast, the spin-echo system has a discrete 
spectrum, retains quantum mechanical coherence throughout its evolution, 
and hence cannot exhibit sensitivity to small changes in initial conditions. 
The lack of sensitivity to initial conditions in the spin-echo systcm is a 
necessary (but not sufficient) condition for the straightforward rcversal of 
the spins' evolution. 

In the final section we use algorithmic information theory to quantify 
the difficulty of getting work out of mechanical systems. In particular, just 
as it is possible to make the evolution of the spins undo itself and give the 
spin echo simply by conjugating the phases of the spins, it is possible in 
principle to reverse the evolution of any quantum mechanical system with 
a time-reversal-invariant Hamiltonian by conjugating the phases of its 
energy eigenstates, and to reverse the evolution of any classical integrable 
system by conjugating the phases of its angle variables. Why don't we 
recharge our batteries by reversing the dissipation of electrical energy? 
Why don't we walk up stairs backward, undoing the downward walk at no 
extra physical cost'? While such feats are possible in principle, the theory of 
algorithms allows us to quantify just how impractical they are. 

2. Q U A N T U M  E L E C T R O D Y N A M I C  T R E A T M E N T  OF 
THE SPIN ECHO 

Before calculating the increase and decrease in entropy of the spins 
over the course of the echo, we make sure that a paradox actually exists. 
After all, the entropy of water decreases when it freezes into ice, without 
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causing any worries about the validity of the second law of thermo- 
dynamics: entropy is simply "pumped" from the water into its surround- 
ings. We must show that the sum of the entropy of the parts of the spin- 
echo system actually decreases, and that entropy is not "pumped" from the 
spins into the electromagnetic field, as it is "pumped" from the position and 
momentum degrees of freedom of the hard-sphere gas into the position and 
angle degrees of freedom of the mirrors that reverse their trajectories. 

Classically, in fact, the electromagnetic field is capable of registering 
arbitrarily small changes in position of the individual spins, and does 
indeed retain a "memory" of the orientation of the spins at the time of 
reversal. Quantum mechanically, although the spins do not radiate photons 
that determine their orientation at the time of reversal, they still absorb 
angular momentum from the photons in the rf field. Can one detect the 
orientation of the spins at the time of reversal by looking at changes in the 
photon population and angular momentum of the rf field, as one can detecl 
the positions and velocities of the molecules in the hard-sphere gas at the 
time of reversal by looking at the orientations and changes in momentum 
of the mirrors that effect the reversal? We now give a detailed quantum 
electrodynamic treatment of the spin echo to show that although the spins 
absorb photons from the field, they leave no trace of their orientation at 
the time of reversal, and do not increase the entropy of the field. 

The full Hamiltonian for a spin-l/2 particle subject to a magnetic field 
with strength Bo = c~o/y along the z axis and to an rf field with frequency 
to along the x axis is 

,X[ ~ = hamta  + ~ a: + h~:(a + a*) a ,. (2.1) 

where h- is the effective coupling of the rf field to the spin within the sample, 
and we treat the magnetic field semiclassically. 

Using the rotating-wave approximation (valid for weak coupling of 
the rf field), we have 

�9 h c o o  , 

= h~ + - T  ~r~ -4- h x ( a t a  _ + aa + ) (2.2) 

where or+_ = (ax +. lay)~2. 
This Hamiltonian may be diagonalized by a trick of Jaynes and 

Cummings (s) to yield eigenstates 

[~b+(n)) = cos O. In+ 1, $) +sin O. bn, T) 

I~b _(n)) = - s in  O. In + 1, ]. ) + cos 0.. In. ~" ) 

(2.3a) 

(2.3b) 



Algorithmic Treatment of the Spin-Echo Effect 825 

where ]n, T) is the state with n quanta in the rf field and the spin pointing 
up, In+ 1, ~) is the state with n +  1 quanta in the field and the spin 
pointin[g down, and where 

x(n + 1) ~/2 
tan 0 n - (09 - COo)/2 + 2~ (2.4) 

~, = { [ ( ~  - ~Oo)/232 + ~2(n + 1 )}'/2 

The I~+_(n)} are eigenstates of the Hamiltonian with eigenvalues 
h(o~(n + 1/2) + ),.). 

We can decompose the rf field number eigenstates in terms of [~b + (n)}: 

In. ~') =s in  0,, [~_(n)) +cos  0 n ]~b+(n)} (2.5a) 

In+ I, .~)=cos  0, ]~b _ ( n ) ) - s i n  0, [~b+(n)) (2.5b) 

Now we can treat the quantum spin-echo effect. Initially, the spins are 
lined up along the x axis, and the rf field is off. The initial state of a typical 
spin is 

]~O(0)) = ~22 (10, Y ) + ]0, $ ) )  (2.6) 

, i  

The spin now precesses around the magnetic field along the z axis. At time 
t, the state is 

[~(t))  = 1-~-(e i~,o,/2 ]0, T) +e ~'''~ I0. ~)) (2.7) 

At time t the rf field is turned on. Let us follow the evolution of a number 
eigenstate of the rf field coupled to the spin. We have 

l~(t)> = - - ~  (e ,,,,0,/2 in, T ) +  e/~176 in, 1) )  
v 

1 
=~--~ {e i"~ 0, I~b+(n))+cos0,  I~b (n ) ) ]  

+e~"~ , J~ ( n - l ) ) ] }  (2.8) 

After a time Jt ,  the spin evolves into a state 

J~(t + At)) = - ~  (e -i'~ 1/2)+ ~..)At sin 0, ]~b + (n))  
" V  

+ e-i~o,/2-i(~o(. + l/z)-,~.)~, cos 0 n ]~b (n))  

+e ~"~ ' ~ ' cos  0 ,  ~ Jo~+(n- 1)) 

_e,,,,o,/2 ,,,,t,, i/2~ ~~ ,~msin0" j]~b ( n - l ) ) )  (2.9) 



826 kloyd and Zurek 

If n is large, so that x2(n+ 1)/[(o~-~Oo)/2]~>> 1, then we have 
2 . .~x (n+  I) I/~, 0. ~ r~/4, and 

~ ~ ( i,,,o,/Z i,,,.~,/z sin tq4~+m)) ~ . / 5  - e  ,~,, At In+ I, +) 
, 1 r  

+ e i.,o,/2 - i,oa,/2 cos 2,, At in, ~( ) 

+e  i'~176176 cos 2,,. I At In, ,~) 

-ei"~176 sa t  I n - 1 ,  ? ) )  (2.10) 
Following the experimental procedure for the maximum spin echo, (~) 

we apply the rf pulse for a time At such that 2,,At ~ 2,, j At ~ re/2, so that 

1 
I~b(t+At))= /g~ (e ..... ,,/2 i,,,A,/2ln+l,~.)+ei,,,,),/2~,,,A,/Zln_l,~)) 

V z  
(2.11) 

(If the rf pulse is applied for an arbitrary length of time, after the pulse the 
system is in a superposition of a state that gives an echo and a state that 
does not. That is, any length rf pulse such that At r Nr~/)., will give some 
spin echo.) At time t + At the rf field is turned off, and at time 2t + At we 
have 

I 
1 ~ ( 2 t + A t ) ) =  - ] - -~  (e i,,,a,/2 In+ 1, ~.)+e ~''~'/2 I n -  1, T)) I2.12) 

v 

I~O(2t + At))  is independent of~oo: the rf pulse puts all the spins in the same 
state at time 2t+At ,  regardless of inhomogeneities in B. that lead to 
different frequencies of precession. We have derived the desired result: the 
spins do not communicate their phase COot to the rf field at the time of 
reversal. We have also derived an unexpected result: l ~ (2 t+At ) )  as 
calculated above for a pure number state does not give a spin echo! Each 
spin taken on its own is in a mixture at time 2t+At:p.,p~,= 
(�89 + I.~><,LI). If the rf field is in a number state, the spins fail to 
realign. 

What has happened? Real-life rf fields are generally superpositions 
of number states, accurately approximated by a coherent state~6~: 
I~b~r) = e-1~'12/2 ~,, (~"/n!)ln). If the rf field is in a coherent state, we have 

1~(2t + / I t )  >coh~o~ 

= ----~',1 e_1~12/2 ~ ~.~" (e -'~'~'/2 In+ 1, .~)+e '~''~t/2 In-- 1, ~))  
t /  

i/ ~,,-1 ~,,+l ) 1 e_l , l : /2 i,oa, In, +) e i~ In, T)  = - ~  ~ ~ . ~ e -  + ~  
/ 

~ 1 0 ~ r ) ( - - ~ 2 ) ( e  i~176 (2.13) 
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Both the rf field and the spins are essentially in pure states at time 2t + At: 
the entropy of the spins at the time of reversal is not transferred to the field. 
Near the peak of the coherent state, n , ~ ,  we have ~" ' ~ ( n - l ) !  
ot "+ ~/(n + 1)!, and the interference necessary to bring about the spin echo 
takes place. 

If the rf field is in a coherent state, the spin echo takes place as usual. 
If the rf field is in a squeezed state sufficiently close to a number eigenstate, 
however, the I1" > and ]~,> states of the spin cannot interfere and the spin 
echo does not occur. The situation is exactly analogous to the double-slit 
experiment: if the sheet in which the slits are cut is in a squeezed state 
sufficiently close to a momentum eigenstate, then one can discover which 
slit a photon has gone through by measuring the sheet's momentum 
after the photon has passed, and no interference pattern appears on the 
s c r e e n .  (7) 

The essential features of the spin-echo effect are preserved by the 
quantum mechanical treatment: the spins become realigned without trans- 
ferring information to the field. From this point on, then, we will treat the 
spin echo classically. 

3. ALGORITHMIC INFORMATION THEORY 

The algorithmic information content Ku(s ) of a binary string s is given 
by the size, in bits, of the shortest program s* that can be used to compute 
s on a universal computer U: 

Kt~(s) = Is~l (3.1) 

The intuitive idea behind this definition is simple and quite powerful: the 
size of the message necessary to communicate certain binary strings is con- 
siderably shorter than their length. For instance, the binary expansion of n 
can be generated from a relatively concise algorithm. By contrast, there is 
only a small chance that such a simple algorithm will exist for a random 
sequence of O's and l's generated by coin flips. 

Solomonoff, ~8) Kolmogorov, ~9 ~ and Chaitin ~12 Js~ have indepen- 
dently suggested how to capture this intuition by means of a rigorous 
formulation based on a theory of computation. When Eq. (3.1) is used to 
define algorithmic information content, the resulting formalism bears a 
strong resemblance to Shannon's information theory. The similarity can 
be further strengthened by insisting that the minimal programs be self- 
delimiting: that is, a computer given a minimal program as input should 
yield an output without being prompted by a special "end marker" that 
tells the computer to expect no more input. A self-delimiting program 
carries within it information about its own size that allows the computer 
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to "decode" it without any additional data. Moreover, the sizes of 
self-delimiting programs satisfy the same Kraft inequality, 1~6~ 

2 x(,C~< l (3.2) 

that is so central to the theory of coding. The requirement that the minimal 
programs be self-delimiting can be met without loss of generality: any 
uniquely decodable code can be converted into a self-delimiting one 
without changing the size of the programs. 

The physical significance of algorithmic information content derives 
from the fact that the states of a system can be represented by binary 
strings that give, for example, the locations of gas particles in phase space 
or the orientations of spins on a lattice. The regularity of the distributions 
of particles in phase space is reflected in the simplicity of a minimal algo- 
rithm that can reproduce their state (e.g., in the form of an appropriate 
plot). Indeed, it was pointed out by Bennet(~7) that in the thermodynamic 
limit, the average algorithmic information content of the microstates in an 
ensemble ~, 

(K(sA)x = ~ p(s,) K(s~) (3.3) 
s t ( ,8 

and the statistical (Shannon) entropy of the ensemble, 

H(g)  = - ~ p(s,)log 2 p(s~) (3.4) 

are almost identical: 

H(#) <~ (K(si))a, < H(#) + K(8) (3.5) 

Here, K(g) is the size of the description of the ensemble, which for thermo- 
dynamic (i.e., "characterized by a few macroscopic quantities") ensembles 
is negligible compared to the statistical entropy H(g). Therefore, 

( K(si) ) g "~ H( g)  (3.6) 

for thermodynamic ensembles, and as Bennett ~ has concluded, one could 
use average algorithmic information content as a foundation for thermo- 
dynamics. 

In addition to the algorithmic information content of a single string, 
one can define the conditional algorithmic information content K(sl t) of a 
string s with respect to some other string t as the size of the minimum 
length program that needs to be supplied in addition to the "data" t in 
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order to produce s on the output tape, Conditional algorithmic informa- 
tion satisfies the relation 

K(s, t) = K(t)  + K(sl t) + O(log2 K(s))  (3.7) 

Conditional algorithmic information content plays an important role 
in discussions of measurement and especially in consideration of the second 
law of thermodynamigs from the viewpoint of a Maxwell's demon-like 
observerJ 3'js~ Measurement allows a demon to decrease the statistical 
entropy of the measured physical system. This decrease is compensated for 
by the increase in the size of the minimal description--the most concise 
form for the acquired data--that must be stored by the demon in its 
memory. 

Following measurement, an amount of work 

A W + = kB T l n ( 2 ) [ H ( p )  - H(p~)] (3.8) 

can be extracted from the system by the slow isothermal "expansion" which 
transforms the postmeasurement density matrix pi back into the 
premeasurement density matrix p. As this process can be performed cycli- 
cally, the second law may appear to be in danger. Fortunately, this is not 
the case. Even through the physical system was returned to the 
premeasurement state, the demon's memory was not. In order to violate 
the second law, the demon would have to restore its memory to the 
original, premeasurement "uncluttered" state. However, as suspected by 
Szilard, (19~ pointed out by Landauer, (2~ and emphasized in the context 
of Maxwell's demon by Bennett, c~7'22~ the erasure of useless information is 
expensive: its cost is kBTln(2) of free energy per bit. The price for the 
demon of erasing the no longer useful record of the past measurement can- 
not be less than Boltzmann's constant times the algorithmic information 
KD(i), where Ko( i  ) is the amount of algorithmic information, defined 
according to the demon's computational resources (hence the subscript), 
required to specify the result of the measurement. That is, the cost of 
erasure, 

A W- = ka Tln(2) Ko(i )  (3.9) 

must be subtracted from the gain of useful work, leaving the net gain 

z I W = A W  + - z I W -  = k a T l n ( 2 ) [ H ( p ) - H ( p i ) - K o ( i ) ]  (3.10) 

However, on average (3"~3) 

(KD(i)) ~ H(p)  -- H(p,)  (3.1 l) 
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Herc, 

(KD(i)) - -~  p;KD(i) (3.12) 
i 

where the {Pi} are the probabilities for the complete set {i} of mutually 
exclusive outcomes corresponding to density matrices {t~g}. Combining 
(3.10) and (3.11), we see that (AW)  <<.0. 

This argument, given in more detail elsewhere, r demonstrates tha~ 
the acquisition of information allows one to extract useful work from a 
physical system only when that system happens to be in a regular (that is, 
concisely describable) state: only then is the minimal cost of erasure, 
kBTIn(2)KD(i), less than the gain of useful work AW +, Eq. (3.8). Even 
though the demon could "luck out" occasionally and discover that the 
system on which it has just performed a measurement turns out to be in 
a simple state, on the average it will have to erase as many bits as the 
entropy decrease effected by measurement, and dissipate at least as much 
free energy as the work gained. 

It is therefore suggested to identify the sum 

~D(Pi) =kB ln(2)[H(p~) + KD(i)] (3.13) 

as the true physical entropy, according to the demon. The key advantage 
of this definition arises from the fact that 5e is conserved in measurements 
on equilibrium ensembles. 

The main lesson of this discussion is the realization that the disorder 
that is responsible for the second law need not be a measure of ignorance 
and need not be measured by probabilities--known disorder, quantified by 
the algorithmic randomness of individual states, KD(i), is equally costly 
from the thermodynamic point of view. The aim of the following sections 
is to show that this algorithmic viewpoint is also useful in discussions of 
the dynamical aspects of the second law. 

4. ALGORITHMIC FORMULATION OF THE 
SPIN-ECHO EFFECT 

To apply these algorithmic ideas to the spin-echo effect, we need a 
coarse graining of the state space. Even if we could measure the orientation 
of each spin individually, the angle of a given spin in the x-y plane can in 
general be resolved only to within an accuracy A~b. A~b is determined by the 
power of our measuring devices and can take on any value. In our discus- 
sion, we take Ar as given. The scale of the coarse graining in the other 
variables such as the time and the frequencies of the spins can then be 
expressed naturally in terms of Aft. 
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Let K({cii(t)}) be the algorithmic complexity of the angles of the spins 
{~bi(t)} at time t relative to a coarse graining to an accuracy A~b: i.e., 

K({~i(t) }) -~ K({ L~,(0/A~J }) (4.1) 

where L~(t)/A~J is the greatest integer less than or equal to q~(t)/d(~. Now 
K({~b,(0)})~0, and K({qk~(t)})<~Nlog2(2~/A~), since the angle of the 
spins is defined modulo 2~. Here ,,~0 means=0+O(1 )  and ~<0 means 
~<0 + O(1 ), where O(1) is an additive constant that depends on the univer- 
sal computer with respect to which the algorithmic complexity is defined. 
The discretization of angular space induces a discretization of time as well, 
since the state of the spins does not change by an amount d~b in a time less 
than At = zl~b/O)o, where COo is the average frequency of Larmor precession 
of the spins (we assume that the spread of frequencies about the average 
frequency 6o~ is small compared to ~o0). 

Initially the spins have algorithmic complexity ~0, since all the spins 
are lined up along the y axis. At time t, we can specify the angles through 
which the spins have precessed either by giving them outright, or by 
specifying to an accuracy At the time since the spins were aligned, and the 
frequencies of the individual spins to an accuracy A(~/t. That is, we have 

K({~b,(t) }) < K( {o)~ }, t) (4.2) 

where K(~oJi}, t) is the algorithmic complexity of the integers 
(L.,, t/a~J, L t/ntJ }. 

We can estimate K({~Jh} , t) as follows. Given ~,~o to within an accuracy 
AO/t, the average amount of additional algorithmic information required to 
specify a given frequency to within an accuracy AO/t is log2[6r 
Our estimate is then 

K({~)j},t,"~K(too)+(N-1) log2 ( 6 ~ / t ) + K ( t )  (4.3) 

where the factor ( N - 1 )  appears rather than N because to specify the 
frequencies of the entire ensemble of N spins we need specify only the 
frequencies of N - 1  spins together with their average frequency o)o. 
Now J~b=~OoZlt, and K(t)~log2(t/dt) for most t. Our estimate for the 
algorithmic complexity of the spins then becomes 

K({o),},t)~Nlog2 -~ + ( N - 1 ) l o g 2  K(o)o) (4.4) 
\ ( n o /  

which is also our estimate for K({~b~(t)}). 
When (t/At)/(~)o/6o9)>t 2n/zt~b, this estimate is greater than the upper 

bound for K({c~(t)}) obtained by listing the orientation of each of the 
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spins explicitly, N log2(2n/Aek). But this occurs if and only if t 6~o>~ 2z, 
which is just the point at which the spins are pointing every which way. 

The algorithmic complexity of the state of the spins does indeed 
increase: their disorder is real, not just apparent. This disorder comes 
about because the state of the spins is becoming correlated with the state 
of the magnetic field in which the spins precess, and the magnetic field is 
itself disordered because of local inhomogeneities. After the rf pulse has 
conjugated the phases of the spins, their state starts to become decorrelated 
from the state of the magnetic field, and their algorithmic complexity even- 
tually returns to its original low value. If the phase conjugation takes place 
at time tr, then the algorithmic complexity of the spins at time tr + z is 
equal to their algorithmic complexity at time t r - r .  The spins rapidly 
become disordered, then just as rapidly become ordered again. 

The overall algorithmic complexity of spins and magnetic field changes 
only slowly during this time, however. Because the magnetic field remains 
constant, and the state of the spins can be obtained simply from the state 
of the magnetic field and the elapsed time t, the overall algorithmic com- 
plexity grows by log2(t/At) on average, as opposed to Nlog2(t/At) for the 
algorithmic complexity of the spins alone. To see this slow growth, note 
that K({C~,(t)}, {~o~}) depends on the accuracies Ao~, to within which the 
frequencies ~oi can be determined. If the orientations of the spins can be 
determined to within an accuracy A~b, and if their evolution can be followed 
up to a time t ..... then the ~ must be known to within an accuracy 
A(o~=A(~/t .... . The coarse graining for the o> i must be at least this 
detailed. Given such a coarse graining, we have gm~({~,(t)}, 
{o9~}) ~ K({o~})+ K(t). But K({~o~})is constant, and K(t),~ log2(t/At)for 
most t. The algorithmic complexity of spins and magnetic field together 
grows slowly by log2(t/zlt), on average. 

It is important to note that although K(t)~ log2(t/At) for most l, K(t) 
often dips down much lower than this bound. In fact, no computable 
monotonically-increasing function grows slowly enough to be a lower 
bound for K(t). (24) Nonetheless, for an arbitrarily selected t, the probability 
that K(t) is l bits less than log2(t/At) is less than 2 - (  For the great 
majority of times smaller than the recurrence time, therefore, our 
logarithmic approximation for K(t) is accurate. 

The slow growth of the overall algorithmic complexity, together with 
the quick growth of the algorithmic complexity of the spins alone, implies 
that the algorithmic mutual information between spins and magnetic field 
is growing rapidly: 

K({q~i(t)}: {w,})=-K({~b,(t)})+K({w,})-K({c~,(t)}, {o~}) 

~K({~,(t)})-K(t) 
N log2(t/At) 
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The mutual information between the spins and magnetic field is almost 
equal to the algorithmic information of the spins themselves; the state of 
the magnetic field, together with the amount of time that has elapsed since 
the spins were aligned, suffices to determine {~b~(t)}. 

The algorithmic picture of the spin-echo effect is clear: The spins do 
indeed become disordered and then become ordered again, but the overall 
disorder of spins and magnetic field only increases by a small amount. The 
structure of the magnetic field nonuniformities supplies the crucial "data" 
that allow the reversal to be accomplished at a relatively small price. 

5. I N F O R M A T I O N - T H E O R E T I C  T R E A T M E N T  OF 
T H E  SP IN  E C H O  

We now show that the normal statistical mechanical entropy of the 
spins does in fact first increase, then decrease in the course of the echo. 
Since the spins and magnetic field make up a Hamiltonian system (ignoring 
spin-spin and spin-lattice interaction), the overall statistical entropy of 
spins and field remains constant, as does the entropy of the magnetic field 
on its own. It is straightforward to calculate the statistical entropy of the 
spins at time t in terms of the entropy of the field. 

Let P(egi)do9 be the probability that the Larmor frequency of the 
ith spin lies in the range [~oe, o~+d~o). Similarly, let p,(ff~)dq~ be the 
probability that ~ lies within the range [~bi,~+d~b) at time t. Since 
ebb(t) =oJ~t at time t, we have p,(~b~)d~b= (l/t)p(~b,/t)d~. The entropies 

H(~,(t)) = - p,(~) log2 p,(~/A~)) d~ 
) 

i 
+ , i ,  

H ( O ) i }  = - -  p(•) log2 p(og/A~o) dr 

are then simply related for times less than 2~z/609: 

H(q~g(t)) = H(o~,) + log2(A~t/zJ~b) (5.1) 

Since we are using entropies over continuous probability distributions, we 
normalize so that distributions with spread A~b and z/o have entropy zero. 
Probability distributions with smaller spreads have negative entropies: 
however, since our coarse graining allows no accuracy greater than z/~o, 
zl~b, such negative entropies will not occur. In addition, since the orienta- 
tions of the spins are only defined modulo 2r~, whenever H ( ~ ( t ) ) >  
logz(2rt/A~b) we set the two equal. 

At time t = 0  the statistical entropy of the spins is zero, and the 
entropy of spins and field taken together is just the entropy of the field. If 
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the deviations of the Larmor frequencies about their mean are 
uncorrelated, then the statistical entropy of all the spins is just N times the 
entropy for a single spin, and the mutual information between spins and 
field as a function of time is 

= + 

t52t = H({wi})+ Nlog~ \ A~b j 

where once again the right-hand side is set equal to zero when negative. 
The statistical entropy of the spins rises as Nlog2 t and is equal to the 
mutual information between spins and magnetic field. 

After the rf pulse has conjugated the phases of the spins, the entropy 
of the spins decreases just as rapidly: the natural evolution of the system 
"uses" the mutual information between spins and field to decrease the 
entropy of the spins. The amount of mutual information available is exactly 
enough to reduce the entropy of the spins to zero without requiring an 
increase in entropy elsewhereJ 25"z6~ 

6. STATIST ICAL E N T R O P Y  VS. A L G O R I T H M I C  I N F O R M A T I O N  

The only difference between the algorithmic randomness of the spin- 
echo system and its statistical entropy is that while the entropy remains 
constant, the algorithmic complexity grows slowly by ~log2(t /At) ,  the term 
that comes from specifying the amount of time that the system has evolved 
since the spins were aligned. Although initially a small term compared with 
the entropy of the spins or magnetic field at time t, this term becomes com- 
parable with these entropies if one waits for a substantial fraction of the 
Poincar6 recurrence time for the system. 

For the macroscopic spin-echo system, the spin-spin and spin-lattice 
relaxation times are much smaller than the Poincar6 time, and the spins 
will have become thermally randomized long before the term log2(t/At) can 
amount to much. The term logz(t/At) is comparable to the algorithmic 
complexity of the spins when t ,,~ ztt2 N. For a collection of only a few spins, 
this term can make a difference after relatively short~mes. In addition, any 
integrable Hamiltonian system is analogous to the spin-echo system. The 
phase space of an integrable system can by a canonical transformation be 
decomposed into action variables--analogous to the frequencies of preces- 
s ion-and  angle variables--analogous to the angles of the spins. One can 
give an algorithmic treatment for any integrable system that is wholly 
analogous to the algorithmic treatment of the spin-echo system. Since 
Hamiltonian systems are nondissipative, it is in principle feasible to follow 
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accurately the evalution of such a system up to a substantial fraction of its 
Poincar6 time. 

The question then arises: Does the extra term log2(t/zlt) make a dif- 
ference in terms of the amount of energy that can be extracted from such 
a system as work? Or is the amount of energy that can be extracted 
constant over time, as the constancy of the fine-grained entropy seems to 
imply? We show below that the extra term does indeed make a difference 
in terms of the amount of energy that can be extracted from an integrable 
system as work: a device that is to extract this energy must devote more 
and more resources to the extraction as time goes on in order to extract the 
same amount of work. The effective physical entropy--the quantity that 
puts limits on how much work can be extracted from a system--rises 
slowly, as logz(t/At). The algorithmic treatment of integrable systems thus 
gives a new contribution to thermodynamics. ~3'tsJ 

7. PHYSICAL ENTROPY 

To see why extracting the same amount of work from an integrable 
system requires more and more resources as time goes on, we apply the 
idea of physical entropy developed in Section 3 to the problem of taking 
full advantage of the energy in the induction signal from the spin 
echo -say, for example, by storing it as electrical energy in a capacitor. We 
look at a "demon," a device that can capture and store lhis energy, and 
show that as time goes on, it must either use more and more memory to 
perform this task, or dissipate more and more energy. 

The radiofrequency coil in which the spins sit is an LC circuit: the 
"demon" is simply a device that throws open a switch in Ihe circuit 
between coil and capacitor after the charge driven by the pulse arrives, 
with the result that the capacitor receives the charge and stores the energy 
from the signal (Fig. la). Such a demon is capable of capturing and storing 
virtually all of the energy in the induction signal, but only if it throws the 
switch open at precisely the right time. If the switch is thrown too soon, no 
charge build up on the capaci tor-- too late, and all the charge leaks away, 
To store all the energy in the pulse, the demon must know the precise time 
of the pulse's arrival. To keep track of this time, the apparatus must devote 
K(t) ~ log2(t/At) of memory space: here the amount of resources allocated 
to capturing the energy of the pulse, as measured by the amount of 
memory space required, rises as the logarithm of the time, on average. 
It is possible that the pulse can arrive at a large but algorithmically 
simple time, in which case the demon need only devote a small amount of 
resources to capturing the energy of the pulse. If the time of arrival is 
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selected arbitrarily, however, the chances of K(t) differing significantly from 
iog2(t/At) are small. 

Suppose that the demon that is to capture the charge driven by the 
pulse does not keep track of when the pulse is to arrive: it can still capture 
this charge by using a trigger to open the switch after the voltage has risen 
to a predetermined level. Clearly, such a strategy will also capture most of 
the charge, and will not have to allocate resources to store the time of the 
pulse's arrival. The only sacrifice is that some of the energy in the pulse 

O L 

~ C 

R 

Fig. 1. (a) Spin-echo circuit with "demon." The spin-echo circuit is an LC circuit incor- 
porating a radiofrequency coil with inductance L that contains the spins, and a capacitor C. 
To store the maximum amount of electrical energy from the induction pulse generated by the 
echo, the demon must open the switch when the charge on the capacitor reaches its maximum 
value. (b) Example of a "demon." The spin-echo circuit is connected to ground by a wire with 
a high resistance R. When the current flowing to ground surpasses a value Itr, the switch is 
thrown open. /tr iS chosen so that when the switch is thrown, the maximum amount of charge 
is isolated on the capacitor. 
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must be diverted to the voltage detector. The requirement that the device 
not be triggered by a thermal fluctuation while waiting for the pulse then 
puts a minimum value on the energy that must be diverted. 

Let the demon use a voltage detector of the most simple sort (Fig. Ib). 
Attach to the circuit a wire with a known resistance connected to ground. 
Since the wire's resistance is known, the amount of current flowing along 
the wire gives the voltage between circuit and ground; the amount of 
current can be registered by a magnetized needle whose deflection indicates 
the strength of the magnetic field in the neighborhood of the wire. When 
the needle's deflection exceeds a set value, it opens the switch, trapping 
charge on the capacitor. To minimize the dissipation caused by such a 
device, the resistance of the wire should be maximized, so that a smaller 
current within the wire reflects a larger voltage drop along the wire. 

But the demon must be careful: if the resistance of the wire is too 
great, the triggering device may interpret the current from a thermal fluc- 
tuation as indicating the presence of the voltage pulse, and open the switch 
when no pulse is in fact present. If the device is triggered by an amount 
of energy Err in the electromagnetic field around the wire, then to ensure 
that the device is not triggered by a thermal fluctuation in the course 
of an interval of length t, we must have the probability of a false 
t r igger=e E'r/k~T(t/tn)~ I, where T is the temperature of the wire, and tn 
is the amount of time it takes for a fluctuation of size k8 T to arise on 
average. (The demon encounters a similar problem in balancing between 
minimizing dissipation and maximizing stored charge if it tries to trap the 
charge by inserting a diode in the circuit before the capacitor. (271) 

Since the circuit is an LC circuit tuned to frequency co, we have 
tn ~ 2~/0~ = 3t/A(~, and so we have 

~ ~)  E t r ~ k ~ T  In ~-~ + In ~-g (7.1) 

But Err is just the amount of energy dissipated in ensuring the capture of 
the energy of the pulse. The amount of dissipation, Et,/kB T, required to 
take advantage of the pulse grows as the logarithm of the amount of time 
in which the pulse can arrive. 

We have sketched the two extreme alternatives: in the first, according 
to the demon, the pulse is in a definite state, arriving at a definite time, and 
the demon is able to take full advantage of the energy in the pulse, but 
must allocate K~log2( t /~ t )  of memory space to store the record of 
the pulse's arrival time. After the pulse has arrived, this record is of no 
further use to the demon, but can be erased only at the cost of 
~kB Tin(2)log2(t/zlt ) of dissipation. In the second alternative, the demon 



838 Lloyd and Zurek 

possesses no information about the time of arrival of the pulse. According 
to such a demon, the pulse has an entropy log2(t//Jt). When the demon 
pins down the energy of the pulse to a definite state by storing it in the 
capacitor, the entropy log2(t/At) must go somewhere: in the device 
described above, it goes to dissipation in the triggering mechanism. The 
total physical entropy 5 r = H + K is the same for both scenarios, and rises 
as the logarithm of time. 

There is also an intermediate alternative in which the demon has some 
information about when the pulse is to arrive, but that information is 
incomplete. For example, suppose that the demon knows the time t at 
which the pulse is to arrive only to an accuracy 6t, t ~> 6t >> At. The amount 
of algorithmic information required to specify this inexact time of arrival is 
log2(t/ft), on average. If the demon uses the triggering device described 
above to discover when the pulse actually arrives during lhc time interwd 
6t, he must dissipate at least kj~Tln(ft/At). The total amount of thermo- 
dynamic resource required is thus at least 

kBTln(2)log2(t /6t)+kBln(2)log2(6t/zt t)=knln(t /3t)  (7.2) 

as before. 
There are two lessons to be learned here. First, to take full advantage 

of the energy inherent in a system, a device must have an algorithmically 
exact description of the form in which the energy is distributed. Second, 
since the algorithmic complexity of Hamiltonian systems increases slowly 
over time, more and more resources must be brought to bear in getting 
work out of such systems even though their fine-grained, statistical entropy 
remains constant. 

8. S U M M A R Y  

In the spin-echo effect, the disorder of the spins first increases, then 
decreases dramatically. This decrease of disorder does not violate the 
second law of thermodynamics, however, since the state of the spins is 
highly correlated with the state of the magnetic field, and entropy ceases to 
be an extensive variable. The overall fine-grained entropy of spins and 
magnetic field is constant. The algorithmic complexity of spins and field, by 
contrast, grows slowly by the logarithm of the time on average. The 
increase in algorithmic complexity is reflected in the increased number of 
resources that must be brought to bear to take full advantage of the spin 
echo. 

In addition, a full quantum electrodynamic treatment of the spins and 
the rf field using the rotating-wave approximation reveals that the coherent 
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nature of the electromagnetic field is essential for attaining the spin echo. 
If the rf field is in a number eigenstate, the echo will not take place. 
Squeezed states that can approximate number eigenstates at the frequencies 
required for the spin echo are not available at present, although optical 
squeezed states have been produced. ~28) If sufficiently intense optical states 
close to number eigenstates could be produced, one could observe the 
quantum mechanical suppression of optical echoes. 
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